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Abstract
Radially polarized radiation is amplified by a free

electron laser (FEL) in which the undulator is an ion
channel with periodic density.  To ensure stable beam
propagation, the undulator period is much shorter than the
betatron wavelength.  The gain at a given distance from
the axis equals that of a planar magnetostatic undulator
with the same quiver velocity.  When an ultrarelativistic
electron beam propagates in a periodic ion density of
1011–1017 cm-3, a short-wavelength FEL may be obtained.

1 INTRODUCTION
When a round electron beam propagates in an ion

channel whose density varies periodically [1], the
electrons undergo forced radial oscillations in addition to
damped betatron oscillations [2].  A periodic ion channel
undulator may be created by ionizing a periodic gas
density [1] or by using a modulated ion beam [2, 3], and
may have application as an FEL [4].

A periodic ion channel FEL is similar to a non-periodic
ion channel laser [5, 6] in that no magnetic field is
required, while benefiting from forced transverse
oscillations similar to those in a magnetostatic undulator
FEL with ion channel guiding [7, 8, 9].  In contrast to an
ion ripple laser where oblique propagation through a
periodic ion density causes a periodic beam deflection
[10], we consider propagation in the direction of the
periodic density gradient.  In this case, lasing results from
periodic focusing rather than a periodic beam deflection.

We calculate amplification of a radially polarized wave
by a periodic ion channel FEL for a cold beam in the low-
gain-per-pass limit.  To ensure stable beam propagation,
we consider the case where the undulator period is much
shorter than the betatron wavelength [2,11].

2 RADIAL MOTION
To model “force” bunching [6], radiation is included in

the transverse dynamics.  We consider an undulator, in
which an electron’s velocity deviates by less than the
angle 1/βγ from the axis, where γ is the beam’s relativistic
factor and β > 0 is the beam velocity divided by the speed
of light c.  In an undulator, the electron motion is non-
relativistic in the frame of reference moving with the
beam as it enters the undulator, so we calculate the
dynamics in this frame, which is related to the laboratory
frame by γ|| and β||.

Consider a periodic ion channel undulator with entrance
at zlab = 0, whose density is given in the laboratory frame
(i.e., the frame where ions are stationary) for zlab > 0 by

)cos()()(),( 10 lablabwlablablablabi zkrnrnzrn −−−− += ,    (1)

where zlab and r are axial and radial coordinates, while
kw-lab > 0 is the undulator wave number equaling 2π
divided by the undulator period λw-lab.  When the
undulator period greatly exceeds the beam radius, the
ions’ electric field in the laboratory is mostly radial [1],
given by Gauss’s law in SI units as
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electron charge and εo is the permittivity of free space.  In
the frame moving with the beam’s axial velocity as it
enters the undulator, the radial electric field from the ion
channel is increased by the factor γ|| [12], giving [2]
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Here, z is the axial coordinate, n0(r) = γ||n0-lab(r), n1(r) =
γ||n1-lab(r), kw = γ||kw-lab and ωw = γ||β||ckw-lab.  The magnetic
field in the e-beam frame is in the azimuthal (φ) direction,
with φ-component Bw = −β||Ew /c.  The axial electric field
in the beam frame equals that in the laboratory; it is
therefore negligible for γ|| >> 1.

For a radially polarized wave traveling forward, the
radial electric field in the low-gain-per-pass limit is
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The azimuthal magnetic field Br equals Er /c, with wave
number kr > 0, phase φr , and frequency ωr = ckr > 0.

The radial electron motion consists of forced
oscillations from the undulator and radiation E-fields, in
addition to damped betatron oscillations from mismatched
injection [2].  For brevity, we will suppress the
dependence of functions upon r in our notation.  In the
case where the undulator period is short compared to the
betatron wavelength [ωw >> ωβ = (n0e

2/εom)1/2, where m is
the electron mass], we consider a small injection
mismatch so that betatron oscillations are negligible. The
radial velocity of an electron at radius r with constant
axial velocity << c is the sum of an undulation with quiver
velocity [2]
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and a forced oscillation from the radiation
( ) ( )rrrrr tzkcatzv φ+ω−= sin, .                     (5)

Here, wâ  obeys
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< n1-lab >), while ar = −eEo /mcωr .  Since kw = ωw /β||c in
eq. (4), the undulation wavelength in the laboratory is
independent of the electron’s axial velocity.
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Any axial velocity function may be approximated to
arbitrary accuracy by constant-velocity segments, so that
eqs. (4)–(6) also apply when the axial velocity is not
constant.  Since vw = 0 at the undulator entrance, a
matched beam has β = β|| and γ  = γ||.  Our assumption of
nonrelativistic electron velocities in the beam frame
requires wâ  << 1.

3 AXIAL MOTION
To describe “inertial” bunching, radiation is included in

the axial dynamics [6].  An electron whose initial axial
position z is 0 and radius is r obeys, to lowest order in the
radiation field
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where radius = r on the right hand side (RHS).  The
solution with initial conditions z(0) = dz/dt(0) = 0 is the
sum of three functions describing radiation-independent
axial motion, inertial bunching, and force bunching.  The
radiation-independent motion obeys d 2zo /dt 2 = (e/m)vw Bw

where z ≈ vo t on the RHS of the equation, with vo

equaling the average axial velocity in the undulator.  The
solution with initial conditions zo(0) = dzo /dt(0) = 0 is
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where ( )cvww β+ω≡ω /1ˆ o  is the undulator frequency

experienced by an electron with axial velocity vo .
Equation (8) gives the average axial velocity as
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The inertial bunching term [6] results from the axial
radiation force on an electron, obeying d 2zi /dt 2 =
(e/m)vw Br where z ≈ zo(t) on the RHS.  For wâ  << 1,

approximating zo(t) ≈ vo t on the RHS for the fundamental
FEL mode gives the solution with initial conditions zi (0)
= dzi /dt(0) = 0:
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where rw ω+ω≡ω+ ˆˆ  and rw ω−ω≡ω− ˆˆ , in which

( )cvrr /1ˆ o−ω≡ω  is the radiation frequency experienced

by an electron with axial velocity vo .  Since the
undulation wavelength in the laboratory is independent of
the electron’s axial velocity, the inertial bunching is also
called “axial” bunching [6].

The force bunching term [6] results from the transverse
radiation force on an electron, obeying d 2zf /dt 2 =
(e/m)vr Bw where z ≈ zo(t) on the RHS.  For wâ  << 1,

approximating zo(t) ≈ vo t on the RHS for the fundamental
FEL mode gives the solution with initial conditions zf (0)
= dzf /dt(0) = 0:
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For effective amplification of radiation, ω–  << ω+ , so that
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Because the undulator field is periodic, the inertial
bunching and force bunching are nearly equal for an
ultrarelativistic e-beam when ω–  << ω+ .

4 GAIN
The change in an electron’s energy from interaction

with the radiation obeys
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where vr , vw and Er are evaluated at radius r and the axial
position z(t) calculated in the previous section.  The
change in an average electron’s energy is given by
averaging over the phase of the radiation φr .  To order
Eo

2, the first term on the RHS does not contribute to this

average, so that for 8)/81(ˆ 10
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where rw kkk +≡+  and rw kkk −≡− .  Equation (12) gives
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where for β ≈ 1, 1+βωw /ωr = 2/(1+vo/c).

Let ∫ φε≡ε∆
T

r
dtdtd

0
 be the average energy change

per electron from interacting with radiation.  Here, T is
the undulator transit time, obeying NTw π=ω 2ˆ  with

integer or half-integer N equaling the number of undulator
periods.  For ω– << ω+ and γ >> 1, eqs. (14) and (15) give
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In the beam frame, the number of electrons passing
through the undulator within a transverse area Ao during a
time to is ne Aoβcto, so that the energy transferred to the
forward wave is −ne Aoβcto∆ε, where ne is the electron
density.  The time-averaged Poynting vector of the
radiation is < S > = εocEo

2/2, with energy density < S >/c.
Since the relative velocity between the forward wave and



undulator is (1+β)c, the electromagnetic energy passing
through the undulator is (< S >/c)(1+β)cto Ao.  The
radiation energy gain per pass at radius r therefore obeys
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Equations (16) and (17) give for γ >> 1
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In the laboratory frame, the maximum transverse
velocity divided by c is obtained from the radial and axial
velocities in the beam frame when |vw | is largest:
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where aw is the wiggler parameter.  The gain at radius r is
given to lowest order in the wiggler parameter aw as
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where ne-lab is the e-beam density, ωw-lab = βckw-lab is the
angular frequency of electron undulations, and Llab is the
undulator length measured in the laboratory frame.  Here,
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where Tlab = Llab /βc is the undulator transit time and kr-lab

is the radiation wave number in the laboratory.  For
optimal amplification, ω–T = 2.61 [4], so that for N >> 1,
γ >> 1 and aw << 1, maximum gain occurs for











++

γ≈

−

−

−
−

lab

labw

labw
labr

n

na

k
k

1

0
2

2

4
1

2
1

2  .                   (22)

When n1-lab(r) and n0-lab(r) are proportional to 1/r and
ne-lab(r) is independent of r, the electron quiver velocity,
gain, and wavelength at which maximum gain occurs are
independent of r, giving ideal undulator performance.  For
an ultrarelativistic beam, the gain equals that of a planar
magnetostatic undulator with the same quiver velocity
[13], while the wavelength experiencing maximum gain is
modified because < n0-lab > ≠ 0 in eq. (22).

5 APPLICATION
To maximize FEL gain while minimizing the ion

density, a strong undulator with aw ≈ 1 at the beam radius
and a strongly modulated ion channel with n1-lab(r) ≈
n0-lab(r) may be utilized.  To ensure stable propagation, we
consider an undulator period much shorter than the
betatron wavelength [2, 11].  The ion density required for
aw ≈ 1 is given by eq. (6).  For a relativistic e-beam, a
periodic ion density < n1-lab > of 3.5×1011 cm-3 is required
for a beam radius rb of 1 cm and λw-lab = 10 cm, while
< n1-lab > = 3.5×1013 cm-3 is required for rb = 1 mm and
λw-lab = 1 cm.  A periodic density of < n1-lab > = 3.5×1015

cm-3 is required for rb = 100 µm and λw-lab = 1 mm, while
< n1-lab > = 3.5×1017 cm-3 is required for rb = 10 µm and
λw-lab = 100 µm.  In all cases, the undulator period is much
shorter than the betatron wavelength for γ >> 3.

One method of obtaining a periodic ion channel is to
create a periodic plasma channel by ionizing a periodic
gas density [1].  When an e-beam propagates in the
channel, the plasma electrons are expelled, provided that
the electron beam density exceeds the peak ion density.
For a strongly modulated ion channel, this requires a
beam current exceeding (17 kA)(kw-lab rb)β2aw.  For the
above examples, the beam current must exceed 11 kA.
The parameters for rb = 1 cm are comparable to those of a
magnetostatic X-band FEL with ion channel guiding [7],
suggesting that a periodic plasma channel FEL may be
operated in the ion-focusing regime.

When a strongly modulated ion beam is used as a
channel, the electron beam density may be smaller than
that of the ions, since ejection of plasma electrons is not
required.  Transporting ions out of the FEL within an ion
bounce period may limit the ion hose instability [3].

6 SUMMARY
A cold electron beam propagating in a periodic ion

channel amplifies radially polarized radiation.  When the
undulator period is much shorter than the betatron
wavelength, the gain at a given distance from the axis
equals that of a planar magnetostatic undulator with the
same quiver velocity.  Our analysis suggests that an X-
band FEL may operate in the ion-focusing regime when
an electron beam expels plasma electrons from plasma
with periodic density.  When an ultrarelativistic electron
beam propagates in a periodic ion channel with density of
1011–1017 cm-3, a short-wavelength FEL may be obtained.
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